A survey on pluriclosed and CYT metrics
Abstract
A Hermitian metric on a complex manifold is called pluriclosed if the torsion of the associated Bismut connection is closed, and it is said to be CYT if the Bismut Ricci form vanishes. In this paper, we survey recent results on pluriclosed and CYT metrics and review some constructions of compact non-Kähler manifolds.
2020 Mathematics Subject Classification:
53C55, 53C05, 22E25, 53C30, 53C44Keywords
Bismut connection, Hermitian metric, pluriclosed metric, CYT metric
References
- L. Alessandrini, G. Bassanelli. Plurisubharmonic currents and their exstension across analytic subsets. Forum Math. 5, 6 (1993), 577–602.
- B. Alexandrov, S. Ivanov. Vanishing theorems on Hermitian manifolds. Differential Geom. Appl. 14, 3 (2001), 251–265.
- D. Angella, A. Otal, L. Ugarte, R. Villacampa. On Gauduchon connections with Kähler-like curvature. Comm. Anal. Geom. 30, 5 (2022), 961–1006.
- D. Angella, A. Otal, L. Ugarte, R. Villacampa. Complex structures of splitting type. Rev. Mat. Iberoam. 33, 4 (2017), 1309–1350.
- V. Apostolov, P. Gauduchon, G. Grantcharov. Bi-Hermitian structures on complex surfaces. Proc. London Math. Soc. (3) 79, 2 (1999), 414–428; Corrigendum Proc. London Math. Soc. 92, 1 (2006), 200–202.
- V. Apostolov, M. Gualtieri. Generalized Kähler manifolds, commuting complex structures, and split tangent bundles. Comm. Math. Phys. 271, 2 (2007), 561–575.
- R. M. Arroyo, R. A. Lafuente. The long-time behavior of the homogeneous pluriclosed flow. Proc. Lond. Math. Soc. (3) 119, 1 (2019), 266–289.
- R. M. Arroyo, M. Nicolini. SKT structures on nilmanifolds, Math. Z. 302, 2 (2022), 1307–1320.
- G. Barbaro. Bismut Hermitian Einstein metrics and the stability of the pluriclosed flow. Preprint, 2023, https://arxiv.org/abs/2307.10207.
- G. Barbaro, F. Pediconi, N. Tardini. Pluriclosed manifolds with parallel Bismut torsion. Preprint, 2024, https://arxiv.org/abs/2406.07039.
- F. A. Belgun. On the metric structure of non-Kähler complex surfaces. Math. Ann. 317, 1 (2000), 1–40.
- J.-M. Bismut. A local index theorem of non-Kähler manifolds. Math. Ann. 284, 4 (1989), 681–699.
- B. Brienza, A. Fino. Generalized Kähler manifolds via mapping tori. Preprint, 2023, https://arxiv.org/abs/2305.11075, to appear in J. Symplectic Geom.
- B. Brienza, A. Fino, G. Grantcharov. CYT and SKT manifolds with parallel Bismut torsion. Preprint, 2024, https://arxiv.org/abs/2401.07800.
- E. Calabi, B. Eckmann. A class of compact, complex manifolds which are not algebraic. Ann. of Math. (2) 58 (1953), 494–500.
- H.-D. Cao. Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds. Invent. Math. 81, 2 (1985), 359–372.
- G. R. Cavalcanti. Formality in generalized Kähler geometry. Topology Appl. 154, 6 (2007), 1119–1125.
- P. Deligne, P. Griffiths, J. Morgan, D. Sullivan. Real homotopy theory of Kähler manifolds. Invent. Math. 29, 3 (1975), 245–274.
- N. Egidi. Special metrics on compact complex manifolds. Differential Geom. Appl. 14, 3 (2001), 217–234.
- N. Enrietti, A. Fino, L. Vezzoni. Tamed symplectic forms and strong Kähler with torsion metrics. J. Symplectic Geom. 10 , 2 (2012), 203–223.
- N. Enrietti, A. Fino, L. Vezzoni. The pluriclosed flow on nilmanifolds and tamed symplectic forms. J. Geom. Anal. 25, 2 (2015), 883–909.
- A. Fino. Canonical metrics in complex geometry. Boll. Unione Mat. Ital. (2024), https://doi.org/10.1007/s40574-024-00421-y.
- A. Fino, G. Grantcharov. Properties of manifolds with skew-symmetric torsion and special holonomy. Adv. Math. 189, 2 (2004), 439–450.
- A. Fino, G. Grantcharov. CYT and SKT metrics on compact semi-simple Lie groups, SIGMA Symmetry Integrability Geom. Methods Appl. 19 (2023), Paper No. 028, 15 pp.
- A. Fino, G. Grantcharov, E. Perez. The pluriclosed flow for T2-invariant Vaisman metrics on the Kodaira-Thurston surface. J. Geom. Phys. 201 (2024), Paper No. 105197, 10 pp; Corrigendum J. Geom. Phys. 203 (2024), Paper No. 105254, 2 pp.
- A. Fino, G. Grantcharov, M. Verbitsky. Special Hermitian structures on suspensions. Preprint, 2022, https://arxiv.org/abs/2208.12168.
- A. Fino, G. Grantcharov, L. Vezzoni. Astheno-Kähler and balanced structures on fibrations. Int. Math. Res. Not. IMRN 22 (2019), 7093–117.
- A. Fino, A. Otal, L. Ugarte. Six-dimensional solvmanifolds with holomorphically trivial canonical bundle. Int. Math. Res. Not. IMRN 24 (2015), 13757–13799.
- A. Fino, F. Paradiso. Hermitian structures on a class of almost nilpotent solvmanifolds. J. Algebra 609 (2022), 861–925.
- A. Fino, M. Parton, S. Salamon. Families of strong KT structures in six dimensions, Comment. Math. Helv. 79, 2 (2004), 317–340.
- A. Fino, N. Tardini. Some remarks on Hermitian manifolds satisfying Kähler-like conditions. Math. Z. 298, 1–2 (2021), 49–68.
- A. Fino. N. Tardini, L. Vezzoni. Pluriclosed and Strominger Kähler-like metrics compatible with abelian complex structures. Bull. Lond. Math. Soc. 54, 5 (2022), 1862–1872.
- A. Fino, A. Tomassini. Blow-ups and resolutions of strong Kähler with torsion metrics. Adv. Math. 221, 3 (2009), 914–935.
- A. Fino, A. Tomassini. A survey on strong KT structures. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 52(100), 2 (2009), 99–116.
- A. Fino, L. Vezzoni. Special Hermitian metrics on compact solvmanifolds. J. Geom. Phys. 91 (2015), 40–53.
- M. Freibert, A. Swann. Two-step solvable SKT shears. Math. Z. 299, 3–4 (2021), 1703–1739.
- M. Freibert, A. Swann. Compatibility of balanced and SKT metrics on two-step solvable Lie groups. Preprint, 2022, https://arxiv.org/abs/2203.16638, to appear in Transform. Groups.
- E. Fusi, R. A. Lafuente, J. Stanfield. The homogeneous generalized Ricci flow, Preprint, 2024, https://arxiv.org/abs/2404.15749.
- M. Garcia-Fernandez, J. Jordan, J. Streets. Non-Kähler Calabi-Yau geometry and pluriclosed flow. J. Math. Pures Appl. (9) 177 (2023), 329–367.
- S. J. Gates Jr., C. M. Hull, M. Roček. Twisted multiplets and new supersymmetric nonlinear σ-models. Nuclear Phys. B 248, 1 (1984), 157–186.
- P. Gauduchon. Hermitian connections and Dirac operators. Boll. Un. Mat. Ital. B (7) 11, 2 (1997), 257–288.
- P. Gauduchon. La classe de Chern pluriharmonique d’un fibré en droites. C. R. Acad. Sci. Paris Sér. A-B 282, 9 (1976), A479–A482.
- P. Gauduchon. Fibrés hermitiens á endomorphisme de Ricci non-négatif. Bull. Soc. Math. France 105, 2 (1977), 113–140.
- P. Gauduchon. La 1-forme de torsion d’une variété hermitienne compacte. Math. Ann. 267, 4 (1984), 495–518.
- R. Goldstein, L. Lininger. A classification of 6-manifolds with free S1 action. Proceedings of the Second Conference on Compact Transformation Groups (Univ. Massachusetts, Amherst, Mass., 1971), Part I, pp. 316–323. Lecture Notes in Math., vol. 298, Berlin-New York, Springer-Verlag, 1972
- D. Grantcharov, G. Grantcharov, Y. S. Poon. Calabi-Yau connections with torsion on toric bundles. J. Differential Geom. 78, 1 (2008), 13–32.
- G. Grantcharov. Geometry of compact complex homogeneous spaces with vanishing first Chern class. Adv. Math. 226, 4 (2011), 3136–3159.
- D. Guan. Classification of compact complex homogeneous spaces with invariant volumes. Trans. Amer. Math. Soc. 354, 11 (2002), 4493–4504.
- M. Gualtieri. Generalized complex geometry. Ph.D. thesis, Oxford University, 2004.
- J. Gutowski, S. Ivanov, G. Papadopoulos. Deformations of generalized calibrations and compact non-Kähler manifolds with vanishing first Chern class. Asian J. Math. 7, 1 (2003) 39–79.
- S. Halperin. Lectures on minimal models. Mém. Soc. Math. France (N.S.) (1983), 9–10, 261 pp.
- R. S. Hamilton. The formation of singularities in the Ricci flow. In: Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), 7–136, Cambridge, MA, International Press, 1995.
- N. J. Hitchin. Instantons, Poisson structures and generalized Kähler geometry. Comm. Math. Phys. 265, 1 (2006), 131-164.
- C. M. Hull. Compactification of the heterotic superstrings, Phys. Lett. B 178, 4 (1986), 357–364.
- J. Jost, S.-T. Yau. A non-linear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorems in Hermitian geometry. Acta Math. 170, 2 (1993), 221–254; Corrigendum Acta Math. 173, 2 (1994), 307.
- R. Lafuente, J. Stanfield. Hermitian manifolds with flat Gauduchon connections. Preprint, 2022, https://arxiv.org/abs/2204.08170, to appear in Ann. Sc. Norm. Super. Pisa Cl. Sci.
- A. Latorre, L. Ugarte. On non-Kähler compact complex manifolds with balanced and astheno- Kähler metrics. C. R. Math. Acad. Sci. Paris 355, 1 (2017), 90–93.
- J. Li, S.-T. Yau, F. Zheng. On projectively flat Hermitian manifolds. Comm. Anal. Geom. 2, 1 (1994), 103–109.
- T. B. Madsen, A. Swann. Invariant strong KT geometry on four-dimensional solvable Lie groups. J. Lie Theory 21, 1 (2011), 55–70.
- M. Manjarín. Normal almost contact structures and non-Kähler compact complex manifolds. Indiana Univ. Math. J. 57, 1 (2008), 481–507.
- Y. Miyaoka. Extension theorems for K¨ahler metrics. Proc. Japan Acad. 50 (1974), 407–410.
- L. Ornea, M. Verbitsky. Principles of locally conformally Kähler geometry. Progr. Math. vol. 354, Cham, Birkhauser/Springer, 2024.
- A. Otiman. Special Hermitian metrics on Oeljeklaus-Toma manifolds. Bull. Lond. Math. Soc. 54, 2 (2022), 655–667.
- R. Piovani, T. Sferruzza. Deformations of strong Kähler with torsion metrics, Complex Manifolds 8, 1 (2021), 286–301.
- M. Poddar, A. S. Thakur. Group actions, non-Kähler complex manifolds and SKT structures. Complex Manifolds 5, 1 (2018), 9–25.
- D. Popovici. Aeppli cohomology classes associated with Gauduchon metrics on compact complex manifolds. Bull. Soc. Math. France 143, 4 (2015), 763–800.
- L. Qin, B. Wang. A family of compact complex and symplectic Calabi-Yau manifolds that are non-Kähler. Geom. Topol. 22, 4 (2018), 2115–2144.
- D. Snow, J. Winkelmann. Compact complex homogeneous manifolds with large automorphism groups. Invent. Math. 134, 1 (1998), 139–144.
- J. Streets, G. Tian. A parabolic flow of pluriclosed metrics. Int. Math. Res. Not. IMRN 16 (2010), 3101–3133.
- A. Strominger. Superstrings with torsion. Nucl. Phys. B 274, 2 (1986), 253–284.
- G. Székelyhidi, V. Tosatti, B. Weinkove. Gauduchon metrics with prescribed volume form. Acta Math. 219, 1 (2017), 181–211.
- H. Samelson. A class of complex-analytic manifolds. Portugal. Math. 12 (1953), 129–132.
- D. Sullivan. Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331.
- D. Tischler. On fibering certain foliated manifolds over S1. Topology 9 (1970), 153–154.
- H. C. Wang. Closed manifolds with homogeneous complex structure. Amer. J. Math. 76 (1954), 1–32.
- Q. Wang, B. Yang, F. Zheng. On Bismut flat manifolds. Trans. Amer. Math. Soc. 373, 8 (2020), 5747–5772.
- Y. Ye. Bismut Einstein metrics on compact complex manifolds. Preprint, 2022, https://arxiv.org/abs/2212.04060.
- Q. Zhao, F. Zheng. On Gauduchon Kähler-like manifolds. J. Geom. Anal. 32, 4 (2022), Paper No. 110, 27 pp.
- Q. Zhao, F. Zheng. Strominger connection and pluriclosed metrics. J. Reine Angew. Math. 796 (2023), 245–267.
- Q. Zhao, F. Zheng. Curvature characterization of Hermitian manifolds with Bismut parallel torsion, Preprint, 2024, https://arxiv.org/abs/2407.10497.