Skip to main navigation menu Skip to main content Skip to site footer

Matrix transforms of the set of α-absolutely convergent sequences with speed

Abstract

We define the notion of \(\alpha\)-absolute convergence with speed, where the speed is defined by a monotonically increasing positive sequence \(\lambda\) and \(0< \alpha \leq 1\). Also we present the notion of \(\alpha\)-absolute \(\lambda\)-conservativity of a matrix, and the notion of improvement of \(\alpha\)-absolute \(\lambda\)-convergence by a matrix. Let \(l_{\alpha}^{\lambda}\) be the set of all \(\alpha\)-absolutely \(\lambda\)-convergent sequences and \(Y\) a sequence space defined by another speed \(\mu\). In this paper, we give necessary and sufficient conditions for a matrix \(A\) (with real or complex entries) to map \(l_{\alpha}^{\lambda}\) into \(Y\). We also present some examples of matrices being \(\alpha\)-absolutely \(\lambda\)-conservative or improving the \(\alpha\)-absolute \(\lambda\)-convergence, and consider these problems in the special cases if \(A\) is the Riesz matrix \((R,p_{n})\) or the Zweier matrix \(Z_{1/2}\).

2020 Mathematics Subject Classification:

40C05, 40D05, 41A25

Keywords

matrix transforms, boundedness, convergence and α-absolute convergence with speed, α-absolute λ-conservativity, improvement of α-absolute λ-convergence

Full text

Author Details

Ants Aasma

Tallinn University of Technology
Department of Economics and Finance
Akadeemia tee 3-456, 12618 Tallinn, Estonia
e-mail: ants.aasma@taltech.ee

P. N. Natarajan

Old No. 2/3, New No.3/3 Second Main Road
R. A. Puram, Chennai 600028 India
e-mail: pinnangudinatarajan@gmail.com


References

  1. A. Aasma, P. N. Natarajan. Absolute convergence with speed and matrix transforms. TWMS J. Appl. Engrg. Math. 14, 3 (2024), 1109–1120.
  2. A. Aasma, P. N. Natarajan. Matrix transforms between sequence spaces defined by speeds of convergence. Filomat 37, 4 (2023), 1029–1036.
  3. A. Aasma, H. Dutta. Matrix transforms of λ-boundedness domains of the Zweier method. TWMS J. Appl. Engrg. Math. 10, special issue (2020), 28–37.
  4. A. Aasma, H. Dutta, P. N. Natarajan. An Introductory Course in Summability Theory. Hoboken, NJ, John Wiley & Sons, Inc., 2017.
  5. A. Aasma. Convergence acceleration and improvement by regular matrices. In: Current Topics in Summability Theory and Applications (eds H. Dutta, B. E. Rhoades), 141–180. Singapore, Springer, 2016.
  6. A. Aasma. On the summability of Fourier expansions in Banach spaces. Proc. Estonian Acad. Sci. Phys. Math. 51, 3 (2002), 131–136.
  7. A. Aasma. Matrix transformations of λ-boundedness fields of normal matrix methods. Studia Sci. Math. Hungar. 35, 1–2 (1999), 53–64.
  8. A. Aasma. Comparison of orders of approximation of Fourier expansions by different matrix methods. Facta Univ. Ser. Math. Inform. 12 (1997), 233–238.
  9. S. Baron. Introduction to the theory of summability of series. Tallinn, Valgus, 1977 (in Russian).
  10. J. Boos. Classical and Modern Methods in Summability. Oxford Math. Monogr. Oxford, University Press, 2000.
  11. E. Jürimäe. Matrix mappings between rate-spaces and spaces with speed. Tartu Ul. Toimetised (Acta Comment. Univ. Tartu Math.) 970 (1994), 29–52.
  12. G. Kangro. Summability factors of Bohr-Hardy type for a given rate, I. Eesti NSV Tead. Akad. Toimetised Füüs.-Mat. (Proc. Est. Acad. Sci. Phys. Math.) 18 (1969), 137–146 (in Russian, Englsh summary).
  13. G. Kangro. Summability factors for the series λ-bounded by the Riesz and Cesàro methods. Tartu Riikl. Ül. Toimetised (Acta Comment. Univ. Tartu Math.) 277(1971), 136–154 (in Russian, Englsh summary).
  14. T. Leiger. Methods of Functional Analysis in Summability Theory. Tartu, Tartu University, 1992 (in Estonian).
  15. I. J. Maddox, M. A. L. Willey. Continuous operators on paranormed spaces and matrix transformations. Pacific. J. Math. 53 (1974), 217–228.
  16. P. N. Natarajan. A study of the matrix classes (lα, lα) and (lα, c), 0 <α ≤ 1. Serdica Math. J. 48, 4 (2022), 211–218.
  17. P. N. Natarajan. Characterization of the matrix class (lα, lβ), 0 < α ≤β ≤ 1. Filomat 35, 13 (2021), 4451–4457.
  18. P. N. Natarajan. Some properties of the matrix class (lα, lα), 0 < α ≤ 1. Comment. Math. 60, 1–2 (2020), 23–36.
  19. M. Stieglitz, H. Tietz. Matrixtransformationen von Folgenräumen. Eine Ergebnisübersicht. Math. Z. 154, 1 (1977), 1–16 (in German).