Matrix transforms of the set of α-absolutely convergent sequences with speed
Abstract
We define the notion of \(\alpha\)-absolute convergence with speed, where the speed is defined by a monotonically increasing positive sequence \(\lambda\) and \(0< \alpha \leq 1\). Also we present the notion of \(\alpha\)-absolute \(\lambda\)-conservativity of a matrix, and the notion of improvement of \(\alpha\)-absolute \(\lambda\)-convergence by a matrix. Let \(l_{\alpha}^{\lambda}\) be the set of all \(\alpha\)-absolutely \(\lambda\)-convergent sequences and \(Y\) a sequence space defined by another speed \(\mu\). In this paper, we give necessary and sufficient conditions for a matrix \(A\) (with real or complex entries) to map \(l_{\alpha}^{\lambda}\) into \(Y\). We also present some examples of matrices being \(\alpha\)-absolutely \(\lambda\)-conservative or improving the \(\alpha\)-absolute \(\lambda\)-convergence, and consider these problems in the special cases if \(A\) is the Riesz matrix \((R,p_{n})\) or the Zweier matrix \(Z_{1/2}\).
2020 Mathematics Subject Classification:
40C05, 40D05, 41A25Keywords
matrix transforms, boundedness, convergence and α-absolute convergence with speed, α-absolute λ-conservativity, improvement of α-absolute λ-convergence
Author Details
Ants Aasma
Tallinn University of Technology
Department of Economics and Finance
Akadeemia tee 3-456, 12618 Tallinn, Estonia
e-mail: ants.aasma@taltech.ee
P. N. Natarajan
Old No. 2/3, New No.3/3 Second Main Road
R. A. Puram, Chennai 600028 India
e-mail: pinnangudinatarajan@gmail.com
References
- A. Aasma, P. N. Natarajan. Absolute convergence with speed and matrix transforms. TWMS J. Appl. Engrg. Math. 14, 3 (2024), 1109–1120.
- A. Aasma, P. N. Natarajan. Matrix transforms between sequence spaces defined by speeds of convergence. Filomat 37, 4 (2023), 1029–1036.
- A. Aasma, H. Dutta. Matrix transforms of λ-boundedness domains of the Zweier method. TWMS J. Appl. Engrg. Math. 10, special issue (2020), 28–37.
- A. Aasma, H. Dutta, P. N. Natarajan. An Introductory Course in Summability Theory. Hoboken, NJ, John Wiley & Sons, Inc., 2017.
- A. Aasma. Convergence acceleration and improvement by regular matrices. In: Current Topics in Summability Theory and Applications (eds H. Dutta, B. E. Rhoades), 141–180. Singapore, Springer, 2016.
- A. Aasma. On the summability of Fourier expansions in Banach spaces. Proc. Estonian Acad. Sci. Phys. Math. 51, 3 (2002), 131–136.
- A. Aasma. Matrix transformations of λ-boundedness fields of normal matrix methods. Studia Sci. Math. Hungar. 35, 1–2 (1999), 53–64.
- A. Aasma. Comparison of orders of approximation of Fourier expansions by different matrix methods. Facta Univ. Ser. Math. Inform. 12 (1997), 233–238.
- S. Baron. Introduction to the theory of summability of series. Tallinn, Valgus, 1977 (in Russian).
- J. Boos. Classical and Modern Methods in Summability. Oxford Math. Monogr. Oxford, University Press, 2000.
- E. Jürimäe. Matrix mappings between rate-spaces and spaces with speed. Tartu Ul. Toimetised (Acta Comment. Univ. Tartu Math.) 970 (1994), 29–52.
- G. Kangro. Summability factors of Bohr-Hardy type for a given rate, I. Eesti NSV Tead. Akad. Toimetised Füüs.-Mat. (Proc. Est. Acad. Sci. Phys. Math.) 18 (1969), 137–146 (in Russian, Englsh summary).
- G. Kangro. Summability factors for the series λ-bounded by the Riesz and Cesàro methods. Tartu Riikl. Ül. Toimetised (Acta Comment. Univ. Tartu Math.) 277(1971), 136–154 (in Russian, Englsh summary).
- T. Leiger. Methods of Functional Analysis in Summability Theory. Tartu, Tartu University, 1992 (in Estonian).
- I. J. Maddox, M. A. L. Willey. Continuous operators on paranormed spaces and matrix transformations. Pacific. J. Math. 53 (1974), 217–228.
- P. N. Natarajan. A study of the matrix classes (lα, lα) and (lα, c), 0 <α ≤ 1. Serdica Math. J. 48, 4 (2022), 211–218.
- P. N. Natarajan. Characterization of the matrix class (lα, lβ), 0 < α ≤β ≤ 1. Filomat 35, 13 (2021), 4451–4457.
- P. N. Natarajan. Some properties of the matrix class (lα, lα), 0 < α ≤ 1. Comment. Math. 60, 1–2 (2020), 23–36.
- M. Stieglitz, H. Tietz. Matrixtransformationen von Folgenräumen. Eine Ergebnisübersicht. Math. Z. 154, 1 (1977), 1–16 (in German).