Skip to main navigation menu Skip to main content Skip to site footer

On necessary conditions in the generalized Bolza problem

Abstract

The paper is devoted to proving necessary optimality conditions for weak/intermediate/strong minimum of a generalized Bolza problem.

2020 Mathematics Subject Classification:

49K15, 49K21, 49K27

Keywords

Bolza problem, Pontryagin maximum principle, variational analysis

Full text

Author Details

Alexander D. Ioffe

Department of Mathematics
Technion, Haifa 32000, Israel
e-mail: alexander.ioffe38@gmail.com


References

  1. F. H. Clarke. The Euler–Lagrange differential inclusion. J. Diff. Equations 19, 1 (1975), 80–90.
  2. F. H. Clarke. The generalized problem of Bolza. SIAM J. Control Optim. 14, 4 (1976), 682–699.
  3. F. H. Clarke. Optimization and Nonsmooth Analysis. Canad. Math. Soc. Ser. Monogr. Adv. Texts Wiley-Intersci. Publ., New York, John Wiley & Sons, Inc., 1983.
  4. F. H. Clarke. Hamiltonian analysis of generalized problem of Bolza. Thans. Amer. Math. Soc. 301, 1 (1987), 385–400.
  5. F. H. Clarke. Necessary Conditions in Dynamic Optimization. Mem. Amer. Math. Soc. 173, 816 (2005), 113 pp.
  6. F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, P. R. Wolenski. Nonsmooth Analysis and Control Theory. Grad. Texts in Math., vol. 178. New York, Springer-Verlag, 1998.
  7. F. H. Clarke, R. B. Vinter. The relationship between the maximum principle and dynamic programming. SIAM J. Control Optim. 25, 5 (1987), 1291–1311.
  8. H. Frankowska, Necessary conditions for the Bolza problem. Math. Oper. Res. 10, 2 (1985), 361–366.
  9. A. D. Ioffe. Euler-Lagrange and Hamiltonian formalisms in dynamic optimization. Trans. Amer. Math. Soc. 349, 7 (1997), 2871–2900.
  10. A. D. Ioffe. Existence and relaxation theorems for unbounded differential inclusions. J. Convex Anal. 13, 2 (2006), 353–362.
  11. A. D. Ioffe. Variational Analysis of Regular Mappings. Springer Monogr. Math. Cham, Springer, 2017.
  12. A. D. Ioffe. On generalized Bolza problem and its application to dynamic optimization. J. Optim. Theory Appl. 182, 1 (2019), 285–309.
  13. A. D. Ioffe, R. T. Rockafellar. The Euler and Weierstrass conditions for nonsmooth variational problems. Calc. Var. Partial Differential Equations 4, 1 (1996), 59–87.
  14. A. Jourani. Lagrangian and Hamiltonian necessary conditions for the generalized Bolza problem and applications. J. Nonlinear Convex Anal. 10, 3 (2009), 437–454.
  15. M. Krastanov, N. Ribarska. A functional analytic approach to a Bolza problem. In: Lecture Notes in Econom. and Math. Systems, vol. 687. Cham, Springer, 2018, 97–117.
  16. P. D. Loewen. Optimal Control via Nonsmooth Analysis. CRM Proc. Lecture Notes, vol. 2. Providence, RI, AMS, 1993.
  17. P. D. Loewen, R. T. Rockafellar. New necessary conditions for the generalized problem of Bolza. SIAM J. Control Optim. 34, 5 (1996), 1496–1511.
  18. R. T. Rockafellar. Existence and duality theorems for convex problems of Bolza. Trans. Amer. Math. Soc. 159 (1971), 1–40.
  19. R. T. Rockafellar, R. J.-B. Wets. Variational Analysis. Grundlehren Math. Wiss., 317 [Fundamental Principles of Mathematical Sciences]. Berlin, Springer-Verlag, 1998.
  20. R. B. Vinter. Optimal Control. Systems Control Found. Appl. Boston, MA, Birkhauser Boston, Inc., 2000.
  21. R. B. Vinter. The Hamiltonian inclusion for nonconvex velocity sets. SIAM J. Control Optim. 52, 2 (2014), 1237–1250.
  22. R. B. Vinter, H. Zheng. The extended Euler-Lagrange conditions in nonconvex variational problems. SIAM J. Control Optim. 35, 1 (1997), 56–77.