On necessary conditions in the generalized Bolza problem
Abstract
The paper is devoted to proving necessary optimality conditions for weak/intermediate/strong minimum of a generalized Bolza problem.
2020 Mathematics Subject Classification:
49K15, 49K21, 49K27Keywords
Bolza problem, Pontryagin maximum principle, variational analysis
Author Details
Alexander D. Ioffe
Department of Mathematics
Technion, Haifa 32000, Israel
e-mail: alexander.ioffe38@gmail.com
References
- F. H. Clarke. The Euler–Lagrange differential inclusion. J. Diff. Equations 19, 1 (1975), 80–90.
- F. H. Clarke. The generalized problem of Bolza. SIAM J. Control Optim. 14, 4 (1976), 682–699.
- F. H. Clarke. Optimization and Nonsmooth Analysis. Canad. Math. Soc. Ser. Monogr. Adv. Texts Wiley-Intersci. Publ., New York, John Wiley & Sons, Inc., 1983.
- F. H. Clarke. Hamiltonian analysis of generalized problem of Bolza. Thans. Amer. Math. Soc. 301, 1 (1987), 385–400.
- F. H. Clarke. Necessary Conditions in Dynamic Optimization. Mem. Amer. Math. Soc. 173, 816 (2005), 113 pp.
- F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, P. R. Wolenski. Nonsmooth Analysis and Control Theory. Grad. Texts in Math., vol. 178. New York, Springer-Verlag, 1998.
- F. H. Clarke, R. B. Vinter. The relationship between the maximum principle and dynamic programming. SIAM J. Control Optim. 25, 5 (1987), 1291–1311.
- H. Frankowska, Necessary conditions for the Bolza problem. Math. Oper. Res. 10, 2 (1985), 361–366.
- A. D. Ioffe. Euler-Lagrange and Hamiltonian formalisms in dynamic optimization. Trans. Amer. Math. Soc. 349, 7 (1997), 2871–2900.
- A. D. Ioffe. Existence and relaxation theorems for unbounded differential inclusions. J. Convex Anal. 13, 2 (2006), 353–362.
- A. D. Ioffe. Variational Analysis of Regular Mappings. Springer Monogr. Math. Cham, Springer, 2017.
- A. D. Ioffe. On generalized Bolza problem and its application to dynamic optimization. J. Optim. Theory Appl. 182, 1 (2019), 285–309.
- A. D. Ioffe, R. T. Rockafellar. The Euler and Weierstrass conditions for nonsmooth variational problems. Calc. Var. Partial Differential Equations 4, 1 (1996), 59–87.
- A. Jourani. Lagrangian and Hamiltonian necessary conditions for the generalized Bolza problem and applications. J. Nonlinear Convex Anal. 10, 3 (2009), 437–454.
- M. Krastanov, N. Ribarska. A functional analytic approach to a Bolza problem. In: Lecture Notes in Econom. and Math. Systems, vol. 687. Cham, Springer, 2018, 97–117.
- P. D. Loewen. Optimal Control via Nonsmooth Analysis. CRM Proc. Lecture Notes, vol. 2. Providence, RI, AMS, 1993.
- P. D. Loewen, R. T. Rockafellar. New necessary conditions for the generalized problem of Bolza. SIAM J. Control Optim. 34, 5 (1996), 1496–1511.
- R. T. Rockafellar. Existence and duality theorems for convex problems of Bolza. Trans. Amer. Math. Soc. 159 (1971), 1–40.
- R. T. Rockafellar, R. J.-B. Wets. Variational Analysis. Grundlehren Math. Wiss., 317 [Fundamental Principles of Mathematical Sciences]. Berlin, Springer-Verlag, 1998.
- R. B. Vinter. Optimal Control. Systems Control Found. Appl. Boston, MA, Birkhauser Boston, Inc., 2000.
- R. B. Vinter. The Hamiltonian inclusion for nonconvex velocity sets. SIAM J. Control Optim. 52, 2 (2014), 1237–1250.
- R. B. Vinter, H. Zheng. The extended Euler-Lagrange conditions in nonconvex variational problems. SIAM J. Control Optim. 35, 1 (1997), 56–77.