Skip to main navigation menu Skip to main content Skip to site footer

Hadamard inverse function theorem proved by variational analysis

Abstract

We present a proof of Hadamard Inverse Function Theorem by the methods of Variational Analysis, adapting an idea of I. Ekeland and E. Séré.

2020 Mathematics Subject Classification:

47J07, 47J30

Keywords

inverse function, variational analysis

Full text

Author Details

Milen Ivanov

Radiant Life Technologies Ltd.
Nicosia, Cyprus
e-mail: milen@radiant-life-technologies.com

Nadia Zlateva

Sofia University
Faculty of Mathematics and Informatics
5 James Bourchier Blvd
1164 Sofia, Bulgaria
e-mail: zlateva@fmi.uni-sofia.bg


References

  1. J.-P. Aubin, I. Ekeland. Applied nonlinear analysis. New York, John Wiley & Sons, 1984, ISBN: 0-486-45324-3.
  2. A. L. Dontchev. Lectures on Variational Analysis. Appl. Math. Sci., vol. 205. Cham, Springer, 2021, ISBN: 978-3-030-79910-6.
  3. A. L. Dontchev, R. T. Rockafellar. Implicit Functions and Solution Mappings: A View from Variational Analysis. Springer Ser. Oper. Res. Financ. Eng. New York, Springer, 2014, ISBN: 978-1-4939-1037-3.
  4. I. Ekeland, E. Séré. A local surjection theorem, 2017, https://project.inria.fr/brenier60/files/2011/12/Brenier.pdf
  5. A. Ioffe. Variational Analysis of Regular Mappings: Theory and Applications. Springer Monogr. Math. Cham, Springer, 2017, ISBN: 978-3-319-64277-2.
  6. J.-P. Penot. Calculus without derivatives. Grad. Texts in Math., vol. 266. New York, Springer, 20133, ISBN: 978-1-4614-4537-1.
  7. R. Plastock. Homeomorphisms between Banach spaces. Trans. Amer. Math. Soc. 200 (1974), 169–183.