Hadamard inverse function theorem proved by variational analysis
Abstract
We present a proof of Hadamard Inverse Function Theorem by the methods of Variational Analysis, adapting an idea of I. Ekeland and E. Séré.
2020 Mathematics Subject Classification:
47J07, 47J30Keywords
inverse function, variational analysis
Author Details
Milen Ivanov
Radiant Life Technologies Ltd.
Nicosia, Cyprus
e-mail: milen@radiant-life-technologies.com
Nadia Zlateva
Sofia University
Faculty of Mathematics and Informatics
5 James Bourchier Blvd
1164 Sofia, Bulgaria
e-mail: zlateva@fmi.uni-sofia.bg
References
- J.-P. Aubin, I. Ekeland. Applied nonlinear analysis. New York, John Wiley & Sons, 1984, ISBN: 0-486-45324-3.
- A. L. Dontchev. Lectures on Variational Analysis. Appl. Math. Sci., vol. 205. Cham, Springer, 2021, ISBN: 978-3-030-79910-6.
- A. L. Dontchev, R. T. Rockafellar. Implicit Functions and Solution Mappings: A View from Variational Analysis. Springer Ser. Oper. Res. Financ. Eng. New York, Springer, 2014, ISBN: 978-1-4939-1037-3.
- I. Ekeland, E. Séré. A local surjection theorem, 2017, https://project.inria.fr/brenier60/files/2011/12/Brenier.pdf
- A. Ioffe. Variational Analysis of Regular Mappings: Theory and Applications. Springer Monogr. Math. Cham, Springer, 2017, ISBN: 978-3-319-64277-2.
- J.-P. Penot. Calculus without derivatives. Grad. Texts in Math., vol. 266. New York, Springer, 20133, ISBN: 978-1-4614-4537-1.
- R. Plastock. Homeomorphisms between Banach spaces. Trans. Amer. Math. Soc. 200 (1974), 169–183.