Skip to main navigation menu Skip to main content Skip to site footer

Solution stability of parabolic optimal control problems with fixed state-distribution of the controls

Abstract

The paper presents results about strong metric subregularity of the optimality mapping associated with the system of first order necessary optimality conditions for a problem of optimal control of a semilinear parabolic equation. The control has a predefined spacial distribution and only the magnitude at any time is a subject of choice. The obtained conditions for subregularity imply, in particular, sufficient optimality conditions that extend the known ones.

The paper is complementary to a companion one by the same authors, in which a distributed control is considered.

2020 Mathematics Subject Classification:

49N60, 49K20, 35K58

Keywords

optimal control, parabolic PDE, stability with respect to perturbations

Full text

Author Details

Alberto Domínguez Corella

Institute of Statistics and Mathematical Methods in Economics
Vienna University of Technology
1040 Vienna, Austria
alberto.corella@tuwien.ac.at

Nicolai Jork

Institute of Statistics and Mathematical Methods in Economics
Vienna University of Technology
1040 Vienna, Austria
nicolai.jork@tuwien.ac.at

Vladimir M. Veliov

Institute of Statistics and Mathematical Methods in Economics
Vienna University of Technology
1040 Vienna, Austria
vladimir.veliov@tuwien.ac.at


References

  1. W. Alt, C. Schneider, M. Seydenschwanz. Regularization and implicit Euler discretization of linear-quadratic optimal control problems with bang-bang solutions. Appl. Math. Comput. 287/288 (2016), 104–124.
  2. E. Casas, A. Dom´ınguez Corella, N. Jork. New assumptions for stability analysis in elliptic optimal control problems. SIAM J. Control Optim. 61, 3 (2023), 1394–1414.
  3. E. Casas, M. Mateos. Critical cones for sufficient second order conditions in PDE constrained optimization. SIAM J. Optim. 30, 1 (2020), 585–603.
  4. E. Casas. Second order analysis for bang-bang control problems of PDEs. SIAM J. Control Optim. 50, 4 (2012), 2355–2372.
  5. E. Casas, M. Mateos. State error estimates for the numerical approximation of sparse distributed control problems in the absence of Tikhonov regularization. Vietnam J. Math. 49, 3 (2021), 713–738.
  6. E. Casas, M. Mateos, A. R¨osch. Error estimates for semilinear parabolic control problems in the absence of Tikhonov term. SIAM J. Control Optim. 57, 4 (2019), 2515–2540.
  7. E. Casas, C. Ryll, F. Tröltzsch. Second order and stability analysis for optimal sparse control of the FitzHugh–Nagumo equation. SIAM J. Control Optim. 53, 4 (2015), 2168–2202.
  8. E. Casas, F. Tröltzsch. Second-order optimality conditions for weak and strong local solutions of parabolic optimal control problems. Vietnam J. Math. 44, 1 (2016), 181–202.
  9. E. Casas, K. Kunisch. Optimal control of semilinear parabolic equations with non-smooth pointwise-integral control constraints in time-space. Appl. Math. Optim. 85, 1 (2022), Paper No. 12, 40 pp.
  10. E. Casas, F. Tröltzsch. Stability for semilinear parabolic optimal control problems with respect to initial data. Appl. Math. Optim., 86, 2 (2022), Paper No. 16, 31 pp.
  11. E. Casas, D. Wachsmuth, G. Wachsmuth. Sufficient second-order conditions for bang-bang control problems. SIAM J. Control Optim. 55, 5 (2017), 3066–3090.
  12. E. Casas, D. Wachsmuth, G. Wachsmuth. Second-order analysis and numerical approximation for bang-bang bilinear control problems. SIAM J. Control Optim. 56, 6 (2018), 4203–4227.
  13. R. Cibulka, A. L. Dontchev, and A. Y. Kruger. Strong metric subregularity of mappings in variational analysis and optimization. J. Math. Anal. Appl. 457, 2 (2018), 1247–1282.
  14. A. Domínguez Corella, N. Jork, V. M. Veliov. Stability in affine optimal control problems constrained by semilinear elliptic partial differential equations. ESAIM Control Optim. Calc. Var. 28 (2022), Paper No. 79, 30 pp.
  15. A. Domínguez Corella, N. Jork, V. M. Veliov. On the solution stability of parabolic optimal control problems. Comput. Optim. Appl. 86, 3 (2023), 1035–1079
  16. A. L. Dontchev, R. Tyrrell Rockafellar. Implicit functions and solution mappings. A view from variational analysis. Springer Monogr. Math. Dordrecht, Springer, 2009.
  17. N. P. Osmolovskii, V. M. Veliov. Metric sub-regularity in optimal control of affine problems with free end state. ESAIM Control Optim. Calc. Var. 26 (2020), Paper No. 47, 19 pp.
  18. N. P. Osmolovskii, V. M. Veliov. On the regularity of Mayer-type affine optimal control problems. In: Large-scale scientific computing, Lecture Notes in Comput. Sci., vol. 11958. Cham, Springer, 2020, 56–63.
  19. N. P. Osmolovskiǐ. Second order conditions for a weak local minimum in an optimal control problem (necessity, sufficiency). Dokl. Akad. Nauk SSSR 225, 2 (1975), 259–262 (in Russian); English translation in Soviet Math. Dokl. 16, 6 (1975), 1480–1484 (1976).
  20. N. T. Qui, D. Wachsmuth. Stability for bang-bang control problems of partial differential equations. Optimization 67, 12 (2018), 2157–2177.
  21. M. Seydenschwanz. Convergence results for the discrete regularization of linear-quadratic control problems with bang-bang solutions. Comput. Optim. Appl. 61, 3 (2015), 731–760.
  22. F. Tröltzsch. Optimal Control of Partial Differential Equations. Theory, Methods and Applications. Translated from the 2005 German original by Jurgen Sprekels. Grad. Stud. Math., vol. 112. Providence, RI, American Mathematical Society, 2010.