Linearization of differential inclusions
Abstract
In this paper we extend the approach of Dubovickiĭ and Miljutin for linearization of the dynamics of smooth control systems to a non-smooth setting. We consider dynamics governed by a differential inclusion and we study the Clarke tangent cone to the set of all admissible trajectories starting from a fixed point. Our approach is based on the classical Filippov’s theorem and on the important property “subtransversality” of two closed sets.
2020 Mathematics Subject Classification:
34A12, 46N10, 47J22Keywords
tangential transversality, nonseparation result, Lagrange multiplier rule
Author Details
Mira Isak Bivas
Faculty of Mathematics and Informatics
Sofia University
5, James Bourchier Blvd
1126 Sofia, Bulgaria
mira.bivas@fmi.uni-sofia.bg
and
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
G. Bonchev Str., Bl. 8
1113 Sofia, Bulgaria
Mikhail Ivanov Krastanov
Faculty of Mathematics and Informatics
Sofia University
5, James Bourchier Blvd
1126 Sofia, Bulgaria
krastanov@fmi.uni-sofia.bg
and
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
G. Bonchev Str., Bl. 8
1113 Sofia, Bulgaria
Nadezhda Kostadinova Ribarska
Faculty of Mathematics and Informatics
Sofia University
5, James Bourchier Blvd
1126 Sofia, Bulgaria
ribarska@fmi.uni-sofia.bg
and
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
G. Bonchev Str., Bl. 8
1113 Sofia, Bulgaria
References
- S. R. Apostolov, M. I. Krastanov, N. K. Ribarska. Sufficient condition for tangential transversality, J. Convex Anal. 27, 1 (2020), 19–30.
- S. R. Apostolov, M. I. Bivas. Characterizations of metric (sub)regularity via (sub)transversality, to appear.
- J.-P. Aubin, A. Cellina. Differential Inclusions. Grundlehren Math. Wiss. [Fundamental Principles of Mathematical Sciences], vol. 264, Springer-Verlag, Berlin, 1984.
- J.-P. Aubin, H. Frankowska. Set-valued analysis. Boston, MA, Birkhauser, 1990.
- H. T. Bui, N. D. Cuong, A. Y. Kruger. Geometric and Metric Characterizations of Transversality Properties, Vietnam J. Math. 48, 2 (2020), 277297, https://doi.org/10.1007/s10013-020-00388-1.
- M. Bivas, M. Krastanov, N. Ribarska. On tangential transversality. J. Math. Anal. Appl. 481, 1 (2020), 123445, 21 pp, https://doi.org/10.1016/j.jmaa.2019.123445.
- C. Castaing, M. Valadier. Convex analysis and measurable multifunctions. Lecture Notes in Math., vol. 580. Berlin-New York, Springer-Verlag, 1977.
- F. H. Clarke. Optimization and Nonsmooth Analysis. Canadian Mathematical Society series of monographs and advanced texts, Canadian Mathematical Society, 1990.
- N. D. Cuong, A. Y. Kruger. Transversality properties: Primal sufficient conditions. Set-Valued Var. Anal. 29, 2 (2021), 221–256.
- N. D. Cuong, A. Y. Kruger. Primal necessary characterizations of transversality properties. Positivity 25, 2 (2021), 531-558, https://doi.org/10.1007/s11117-020-00775-5.
- K. Deimling. Multivalued differential equations. De Gruyter Ser. Nonlinear Anal. Appl., vol. 1. Berlin, Walter de Gruyter & Co., 1992.
- A. L. Dontchev, R. T. Rockafellar. Implicit Functions and Solution Mappings: A View from Variational Analysis, 2nd ed. New York, Springer-Verlag, 2014.
- D. Drusvyatskiy, A. D. Ioffe, A. S. Lewis. Transversality and alternating projections for nonconvex sets. Found. Comput. Math. 15, 6 (2015), 16371651.
- A. Ya. Dubovitskii, A. A. Milyutin. Extremum problems in the presence of restrictions. USSR Computational Mathematics and Mathematical Physics 5, 3 (1965), 1–80, https://doi.org/10.1016/0041-5553(65)90148-5.
- A. F. Filippov. Classical solutions of differential equations with multivalued right-hand side. SIAM J. Control 5 (1967), 609-621
- H. Frankowska. The maximum principle for an optimal solution to a differential inclusion with end points constraints, SIAM J. Control Optim. 25, 1 (1987), 145-157.
- H. Frankowska. Local controllability and infinitesimal generators of semigroups of set-valued maps. SIAM J. Control Optim. 25, 2 (1987), 412432.
- Ioffe A., V. Tihomirov. Theory of extremal problems. Series in Nonlinear Analysis and its Applications. Moscow, Nauka, 1974 (in Russian).
- A. D. Ioffe. Metric regularity and subdifferential calculus. Uspekhi Mat. Nauk 55, 3 (2000), 103–162 (in Russian); English translation in Russian Math. Surveys 55, 3 (2000), 501–558.
- A. Ioffe. Variational Analysis of Regular Mappings: Theory and Applications. Springer Monogr. Math. Cham, Springer, 2017.
- A. Y. Kruger. About regularity of collections of sets. Set-Valued Anal., 14, 2 (2006), 187-206.
- A. Y. Kruger, D. R. Luke, N. H. Tao. About Subtransversality of collections of sets. Set-Valued Var. Anal. 25, 4 (2017), 701-729, https://doi.org/10.1007/s11228-017-0436-5.
- A. Y. Kruger, D. R. Luke, N. H. Tao. Set regularities and feasibility problems. Math. Program. B 168, 1–2 (2018), 279–311.
- P. D. Loewen, R. T. Rockafellar. Bolza problems with general time constraint, SIAM J. Control Optim. 35, 6 (1997), 2050–2069.
- P. D. Loewen, R. T. Rockafellar. New necessary conditions for the generalized problem of Bolza. SIAM J. Control Optim. 34, 5 (1996), 1496–1511.
- J.-P. Penot. Calculus without derivatives. Grad. Texts in Math., vol. 266. New York, Springer, 2013.
- R. T. Rockafellar. Conjugate convex functions in optimal control and the calculus of variations. J. Math. Anal. Appl. 32 (1970), 174–222.
- R. T. Rockafellar. Convex analysis in the calculus of variations. In: Advances in Convex Analysis and Global Optimization (eds N. Hadjisavvas and P. M. Pardalos), NOIA, vol. 54, 135–152, 2001. Boston, MA, Springer, https://doi.org/10.1007/978-1-4613-0279-7_7.
- J. S. Treiman. Characterization of Clarke’s tangent and normal cones in finite and infinite dimensions. Nonlinear Anal. 7, 7 (1983), 771–783