Skip to main navigation menu Skip to main content Skip to site footer

Linearization of differential inclusions

Abstract

In this paper we extend the approach of Dubovickiĭ and Miljutin for linearization of the dynamics of smooth control systems to a non-smooth setting. We consider dynamics governed by a differential inclusion and we study the Clarke tangent cone to the set of all admissible trajectories starting from a fixed point. Our approach is based on the classical Filippov’s theorem and on the important property “subtransversality” of two closed sets.

2020 Mathematics Subject Classification:

34A12, 46N10, 47J22

Keywords

tangential transversality, nonseparation result, Lagrange multiplier rule

Full text

Author Details

Mira Isak Bivas

Faculty of Mathematics and Informatics
Sofia University
5, James Bourchier Blvd
1126 Sofia, Bulgaria
mira.bivas@fmi.uni-sofia.bg
and
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
G. Bonchev Str., Bl. 8
1113 Sofia, Bulgaria

Mikhail Ivanov Krastanov

Faculty of Mathematics and Informatics
Sofia University
5, James Bourchier Blvd
1126 Sofia, Bulgaria
krastanov@fmi.uni-sofia.bg
and
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
G. Bonchev Str., Bl. 8
1113 Sofia, Bulgaria

Nadezhda Kostadinova Ribarska

Faculty of Mathematics and Informatics
Sofia University
5, James Bourchier Blvd
1126 Sofia, Bulgaria
ribarska@fmi.uni-sofia.bg
and
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
G. Bonchev Str., Bl. 8
1113 Sofia, Bulgaria


References

  1. S. R. Apostolov, M. I. Krastanov, N. K. Ribarska. Sufficient condition for tangential transversality, J. Convex Anal. 27, 1 (2020), 19–30.
  2. S. R. Apostolov, M. I. Bivas. Characterizations of metric (sub)regularity via (sub)transversality, to appear.
  3. J.-P. Aubin, A. Cellina. Differential Inclusions. Grundlehren Math. Wiss. [Fundamental Principles of Mathematical Sciences], vol. 264, Springer-Verlag, Berlin, 1984.
  4. J.-P. Aubin, H. Frankowska. Set-valued analysis. Boston, MA, Birkhauser, 1990.
  5. H. T. Bui, N. D. Cuong, A. Y. Kruger. Geometric and Metric Characterizations of Transversality Properties, Vietnam J. Math. 48, 2 (2020), 277297, https://doi.org/10.1007/s10013-020-00388-1.
  6. M. Bivas, M. Krastanov, N. Ribarska. On tangential transversality. J. Math. Anal. Appl. 481, 1 (2020), 123445, 21 pp, https://doi.org/10.1016/j.jmaa.2019.123445.
  7. C. Castaing, M. Valadier. Convex analysis and measurable multifunctions. Lecture Notes in Math., vol. 580. Berlin-New York, Springer-Verlag, 1977.
  8. F. H. Clarke. Optimization and Nonsmooth Analysis. Canadian Mathematical Society series of monographs and advanced texts, Canadian Mathematical Society, 1990.
  9. N. D. Cuong, A. Y. Kruger. Transversality properties: Primal sufficient conditions. Set-Valued Var. Anal. 29, 2 (2021), 221–256.
  10. N. D. Cuong, A. Y. Kruger. Primal necessary characterizations of transversality properties. Positivity 25, 2 (2021), 531-558, https://doi.org/10.1007/s11117-020-00775-5.
  11. K. Deimling. Multivalued differential equations. De Gruyter Ser. Nonlinear Anal. Appl., vol. 1. Berlin, Walter de Gruyter & Co., 1992.
  12. A. L. Dontchev, R. T. Rockafellar. Implicit Functions and Solution Mappings: A View from Variational Analysis, 2nd ed. New York, Springer-Verlag, 2014.
  13. D. Drusvyatskiy, A. D. Ioffe, A. S. Lewis. Transversality and alternating projections for nonconvex sets. Found. Comput. Math. 15, 6 (2015), 16371651.
  14. A. Ya. Dubovitskii, A. A. Milyutin. Extremum problems in the presence of restrictions. USSR Computational Mathematics and Mathematical Physics 5, 3 (1965), 1–80, https://doi.org/10.1016/0041-5553(65)90148-5.
  15. A. F. Filippov. Classical solutions of differential equations with multivalued right-hand side. SIAM J. Control 5 (1967), 609-621
  16. H. Frankowska. The maximum principle for an optimal solution to a differential inclusion with end points constraints, SIAM J. Control Optim. 25, 1 (1987), 145-157.
  17. H. Frankowska. Local controllability and infinitesimal generators of semigroups of set-valued maps. SIAM J. Control Optim. 25, 2 (1987), 412432.
  18. Ioffe A., V. Tihomirov. Theory of extremal problems. Series in Nonlinear Analysis and its Applications. Moscow, Nauka, 1974 (in Russian).
  19. A. D. Ioffe. Metric regularity and subdifferential calculus. Uspekhi Mat. Nauk 55, 3 (2000), 103–162 (in Russian); English translation in Russian Math. Surveys 55, 3 (2000), 501–558.
  20. A. Ioffe. Variational Analysis of Regular Mappings: Theory and Applications. Springer Monogr. Math. Cham, Springer, 2017.
  21. A. Y. Kruger. About regularity of collections of sets. Set-Valued Anal., 14, 2 (2006), 187-206.
  22. A. Y. Kruger, D. R. Luke, N. H. Tao. About Subtransversality of collections of sets. Set-Valued Var. Anal. 25, 4 (2017), 701-729, https://doi.org/10.1007/s11228-017-0436-5.
  23. A. Y. Kruger, D. R. Luke, N. H. Tao. Set regularities and feasibility problems. Math. Program. B 168, 1–2 (2018), 279–311.
  24. P. D. Loewen, R. T. Rockafellar. Bolza problems with general time constraint, SIAM J. Control Optim. 35, 6 (1997), 2050–2069.
  25. P. D. Loewen, R. T. Rockafellar. New necessary conditions for the generalized problem of Bolza. SIAM J. Control Optim. 34, 5 (1996), 1496–1511.
  26. J.-P. Penot. Calculus without derivatives. Grad. Texts in Math., vol. 266. New York, Springer, 2013.
  27. R. T. Rockafellar. Conjugate convex functions in optimal control and the calculus of variations. J. Math. Anal. Appl. 32 (1970), 174–222.
  28. R. T. Rockafellar. Convex analysis in the calculus of variations. In: Advances in Convex Analysis and Global Optimization (eds N. Hadjisavvas and P. M. Pardalos), NOIA, vol. 54, 135–152, 2001. Boston, MA, Springer, https://doi.org/10.1007/978-1-4613-0279-7_7.
  29. J. S. Treiman. Characterization of Clarke’s tangent and normal cones in finite and infinite dimensions. Nonlinear Anal. 7, 7 (1983), 771–783