Some limits for the Laplace transform of the Brownian motion's first hit to a linear function
Abstract
The aim of this short note is to examine some limits related to the Laplace transform of the Brownian motion before its first hit to a linear boundary.
2020 Mathematics Subject Classification:
42A38, 60G40, 60J65Keywords
Brownian motion, stopping times, first hitting, Laplace transform
References
- T. W. Anderson. A modification of the sequential probability ratio test to reduce the sample size. Ann. Math. Statist. 31 (1960) 165–197.
- F. Black, M.Scholes. The pricing of options and corporate liabilities. J. Polit. Econ. 81, 3 (1973), 637–654.
- D. S. Donchev. An excursion characterization of the first hitting time of Brownian motion in a smooth boundary. Random Oper. Stoch. Equ. 15, 1 (2007), 35–48.
- D. S. Donchev. Brownian motion hitting probabilities for general two-sided square-root boundaries. Methodol. Comput. Appl. Probab. 12, 2 (2010), 237–245, https://doi.org/10.1007/s11009-009-9144-4.
- R. D. Gordon. Values of Mills’ ratio of area to bounding ordinate and of the normal probability integral for large values of the argument. Ann. Math. Statistics 12 (1941), 364–366.
- Z. Jin, L. Wang. First passage time for Brownian motion and piecewise linear boundaries. Methodol. Comput. Appl. Probab. 19, 1 (2017), 237–253, https://doi.org/10.1007/s11009-015-9475-2.
- K. Pötzelberger, L. Wang. Boundary crossing probability for Brownian motion. J. Appl. Probab. 38, 1 (2001), 152–164.
- L. Wang, K. Pötzelberger. Boundary crossing probability for Brownian motion and general boundaries. J. Appl. Probab. 34, 1 (1997), 54–65.
- T. S. Zaevski. Laplace transforms for the first hitting time of a Brownian motion. C. R. Acad. Bulgare Sci. 73, 7 (2020), 934–941, https://doi.org/10.7546/CRABS.2020.07.05.
- T. S. Zaevski. Laplace transforms of the Brownian motion’s first exit from a strip. C. R. Acad. Bulgare Sci. 74, 5 (2021), 669–676, https://doi.org/10.7546/CRABS.2021.05.04.
- T. S. Zaevski. On some generalized American style derivatives. Comput. Appl. Math. 43, 3 (2024), Paper No. 115, 29 pp.
- T. S. Zaevski. On the American style futures contracts. Croat. Oper. Res. Rev. CRORR 15, 1 (2024), 39–50, https://doi.org/10.17535/crorr.2024.0004.