Skip to main navigation menu Skip to main content Skip to site footer

Some limits for the Laplace transform of the Brownian motion's first hit to a linear function

Abstract

The aim of this short note is to examine some limits related to the Laplace transform of the Brownian motion before its first hit to a linear boundary.

2020 Mathematics Subject Classification:

42A38, 60G40, 60J65

Keywords

Brownian motion, stopping times, first hitting, Laplace transform

Full text

References

  1. T. W. Anderson. A modification of the sequential probability ratio test to reduce the sample size. Ann. Math. Statist. 31 (1960) 165–197.
  2. F. Black, M.Scholes. The pricing of options and corporate liabilities. J. Polit. Econ. 81, 3 (1973), 637–654.
  3. D. S. Donchev. An excursion characterization of the first hitting time of Brownian motion in a smooth boundary. Random Oper. Stoch. Equ. 15, 1 (2007), 35–48.
  4. D. S. Donchev. Brownian motion hitting probabilities for general two-sided square-root boundaries. Methodol. Comput. Appl. Probab. 12, 2 (2010), 237–245, https://doi.org/10.1007/s11009-009-9144-4.
  5. R. D. Gordon. Values of Mills’ ratio of area to bounding ordinate and of the normal probability integral for large values of the argument. Ann. Math. Statistics 12 (1941), 364–366.
  6. Z. Jin, L. Wang. First passage time for Brownian motion and piecewise linear boundaries. Methodol. Comput. Appl. Probab. 19, 1 (2017), 237–253, https://doi.org/10.1007/s11009-015-9475-2.
  7. K. Pötzelberger, L. Wang. Boundary crossing probability for Brownian motion. J. Appl. Probab. 38, 1 (2001), 152–164.
  8. L. Wang, K. Pötzelberger. Boundary crossing probability for Brownian motion and general boundaries. J. Appl. Probab. 34, 1 (1997), 54–65.
  9. T. S. Zaevski. Laplace transforms for the first hitting time of a Brownian motion. C. R. Acad. Bulgare Sci. 73, 7 (2020), 934–941, https://doi.org/10.7546/CRABS.2020.07.05.
  10. T. S. Zaevski. Laplace transforms of the Brownian motion’s first exit from a strip. C. R. Acad. Bulgare Sci. 74, 5 (2021), 669–676, https://doi.org/10.7546/CRABS.2021.05.04.
  11. T. S. Zaevski. On some generalized American style derivatives. Comput. Appl. Math. 43, 3 (2024), Paper No. 115, 29 pp.
  12. T. S. Zaevski. On the American style futures contracts. Croat. Oper. Res. Rev. CRORR 15, 1 (2024), 39–50, https://doi.org/10.17535/crorr.2024.0004.